Antibiotic de-escalation (ADE) is important to help optimize antibiotic use and balance the positive and negative effects of antimicrobial therapy. ADE should be performed promptly, and infections should be treated with the shortest course of antimicrobials as clinically feasible to avoid unnecessary use of broad-spectrum antimicrobials. Several tools have been developed to increase efficient ADE, including rapid diagnostic tests (ex. multiplex PCR), MRSA nasal PCR/culture, and biomarkers. Multiplex PCR and MRSA nasal PCR/culture have been associated with reductions in inappropriate antibiotic use. Procalcitonin, a biomarker, has been associated with shorter antimicrobial durations in some studies; however, widespread use may be limited by lack of specificity for bacterial infections, cost, and lack of set cut-off points. Additional biomarkers such as IL-6, HMGB1, presepsin, sTREM-1, CD64, PSP, proadrenomedullin, and pentraxin-3 are currently being studied. As technology improves, additional tools may be leveraged to better optimize ADE even better, such as antimicrobial spectrum scoring tools and artificial intelligence (AI). Spectrum scores, which quantify antibiotic activity using specific numeric values, could be incorporated into electronic health records to identify patients on unnecessarily broad antibiotics. AI modeling has the potential to predict personal antibiograms or provide the probability that an empiric regimen may cover a particular infection, among other potential applications. This review will discuss the literature associated with ADE in the ICU, selected tools to help guide ADE, and perspectives on how to implement ADE into clinical practice.
Loading....